Error bounds for mixed integer nonlinear optimization problems

نویسنده

  • Oliver Stein
چکیده

We introduce a-posteriori and a-priori error bounds for optimality and feasibility of a point generated as the rounding of an optimal point of the NLP relaxation of a mixed-integer nonlinear optimization problem. Our analysis mainly bases on the construction of a tractable approximation of the so-called grid relaxation retract. Under appropriate Lipschitz assumptions on the defining functions, we thereby generalize and slightly improve results for the mixed-integer linear case from O. Stein, Error bounds for mixed integer linear optimization problems, Mathematical Programming, 2015, DOI 10.1007/s10107-015-0872-7. In particular, we identify cases in which the optimality and feasibility errors tend to zero at an at least linear rate for increasingly refined meshes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A feasible rounding approach for mixed-integer nonlinear optimization problems

We introduce a new technique to generate good feasible points of mixedinteger nonlinear optimization problems. It makes use of the so-called inner parallel set of the relaxed feasible set, which was employed in O. Stein, Error bounds for mixed integer linear optimization problems, Mathematical Programming, Vol. 156 (2016), 101–123, as well as O. Stein, Error bounds for mixed integer nonlinear o...

متن کامل

A feasible rounding approach for granular optimization problems

We introduce a new technique to generate good feasible points of mixedinteger nonlinear optimization problems which are granular in the sense that a certain inner parallel set of their continuously relaxed feasible set is consistent. The latter inner parallel set was employed in O. Stein, Error bounds for mixed integer linear optimization problems, Mathematical Programming, Vol. 156 (2016), 101...

متن کامل

Global Solution Strategies for the Network-Constrained Unit Commitment (NCUC) Problem with Nonlinear AC Transmission Models

This paper addresses the globally optimal solution of the network-constrained unit commitment (NCUC) problem incorporating a nonlinear alternating current (AC) model of the transmission network. We formulate the NCUC as a mixed-integer quadratically constrained quadratic programming (MIQCQP) problem. A global optimization algorithm is developed based on a multi-tree approach that iterates betwe...

متن کامل

Error bounds for mixed integer linear optimization problems

We introduce computable a-priori and a-posteriori error bounds for optimality and feasibility of a point generated as the rounding of an optimal point of the LP relaxation of a mixed integer linear optimization problem. Treating the mesh size of integer vectors as a parameter allows us to study the effect of different ‘granularities’ in the discrete variables on the error bounds. Our analysis m...

متن کامل

Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory

Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Letters

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016